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We present a general theory of electromagnetic diffraction-free beams composed of uncorrelated Bessel modes.
Our approach is based on the direct application of the nonnegativity constraint to the cross-spectral density
tensor describing the electromagnetic field distribution. The field correlation properties are most conveniently
derived in the spatial frequency domain, where the angular spectrum takes on the form of an infinitely thin
ring. We also present several examples, including a vector generalization of the recently introduced dark and
antidark diffraction-free beams. © 2009 Optical Society of America
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. INTRODUCTION
he existence of diffraction-free beams was pointed out by
heppard and Wilson in 1978 [1]. It seems, however, that
he physics community became aware of the associated
ossibilities only after the paper by Durnin et al. in 1987
2]. This triggered a flurry of activity resulting in thor-
ugh studies of various classes of spatial, temporal and
patiotemporal nondiffracting fields [3–12]. While the ma-
ority of diffraction-free beams examined to date have
een fully spatially coherent [2–8], there has been grow-
ng interest in partially spatially coherent diffraction-free
eams [9–11]. In particular, linear cousins of dark and an-
idark optical solitons [13], the so-called dark and anti-
ark diffraction-free beams, have been recently intro-
uced, and their partially coherent nature has been
xplained in[11].

To our knowledge, however, research on partially coher-
nt diffraction-free beams has so far been essentially re-
tricted to the scalar treatment (for some notable excep-
ions, see[14–16] and references therein).

The purpose of the present paper is to develop a gen-
ral framework within which a multitude of electromag-
etic partially correlated diffraction-free beams can be
reated. As a particular illustration of our approach, we
rovide a vectorial generalization of the scalar dark and
ntidark diffraction-free (DADDF) beams. We also deter-
ine a full electromagnetic mode expansion of the novel

eams and demonstrate that the vector modes are given
y uncorrelated superpositions of suitably polarized
essel beams.
This work is organized as follows. In Section 2, we out-

ine the necessary elements of coherence theory and
tress the relevant terminology. This is followed by a brief
escription of recently introduced DADDF beams, which
aturally evolves into their electromagnetic generaliza-
1084-7529/09/112275-7/$15.00 © 2
ion in Section 3. In Section 4, we present and discuss sev-
ral examples of novel electromagnetic diffraction-free
eams composed of uncorrelated Bessel modes. We sum-
arize our findings in Section 5.

. PRELIMINARIES
n this section we recall a few relevant concepts and tools
f coherence theory. For a more detailed discussion the
eader is referred to such textbooks as [17,18]. Hereafter
e restrict our attention to planar sources, which can be
ither primary or secondary ones. In many practical situ-
tions, a scalar description of optical coherence properties
f the fields generated by such sources may well be suffi-
ient. Scalar coherence theory can be formulated in either
he space–time or the space–frequency domain [17,18]. In
he latter case, the scalar description of a stochastic
ource is based on the cross-spectral density (CSD) de-
ned as

W��1,�2,�� = �V*��1,��V��2,���, �1�

here V�� ,�� is an ensemble representative of a scalar
ptical field of frequency � at the position specified by the
ector � in the source plane. In the following, we shall
mit any explicit dependence on �. The angular brackets
enote the average over an ensemble of statistical realiza-
ions of the field, and the asterisk stands for a complex
onjugate. It can be shown that W must be nonnegative
efinite, implying that for any—finite or denumerable—
et of arbitrarily chosen position vectors �n and complex
onstants an, the following quadratic form

Q = �
n,m

W��n,�m�an
*am, �2�

as to be nonnegative. The continuous version of this qua-
ratic form reads
009 Optical Society of America



w
f
o
f

s
s
s

w
U
S
o
d
s
s

E
a
m
a
i
l
a
e
v

s
fi
q
s
f
e
s
s

a
e
i
c
s
H

w

H
C
t
f

h
o
m

c

H
a
v

w
t

w

E
g
d
E
u
i
t

w
o
c
c

i
t
t
m
e
l
n
r
n
fi
m

t
c
i

2276 J. Opt. Soc. Am. A/Vol. 26, No. 11 /November 2009 Borghi et al.
Q =�� d2�1d2�2W��1,�2�f*��1�f��2�, �3�

hich has to be nonnegative for any choice of the function
���. Obviously, Eq. (2) can be considered a particular case
f Eq. (3) if the function f��� reduces to a set of Dirac delta
unctions.

The concept of coherent modes [19] is at the heart of
calar coherence theory. To introduce the modes, we con-
ider a homogeneous Fredholm integral equation of the
econd kind,

� d2�1W��1,�2�u��1� = �u��2�, �4�

here the integral is extended across the source plane.
nder the assumption that W��1 ,�2� is a Hilbert–
chmidt kernel, the eigenfunctions, say un���, form a set
f orthonormal functions. Because of the nonnegative
efiniteness of the kernel W, the associated eigenvalues,
ay �n, are nonnegative. Furthermore, CSD can be repre-
ented by the following Mercer-type series:

W��1,�2� = �
n

�nun
*��1�un��2�. �5�

quation (5) is called the modal expansion of the CSD,
nd the functions un��� are referred to as the source
odes. It is important to note that each mode represents
spatially coherent field. The physical meaning of Eq. (5)

s that the various modes are superposed in an uncorre-
ated way, each mode carrying power proportional to the
ssociated eigenvalue. This gives rise to a partially coher-
nt field distribution except when only one of the eigen-
alues differs from zero.

Since the mode and eigenvalue determination involves
olving the Fredholm integral equation, considerable dif-
culties arise in finding explicit expressions for these
uantities. As a matter of fact, closed-form modal expan-
ions are available, but for a limited number of cases (see,
or instance, [20–24]). On the other hand, detailed knowl-
dge of the spatial mode structure may be irrelevant for
olving certain problems; the mere existence of the modes
uffices.

Let us now proceed to the electromagnetic case. As long
s the field generated by the source is beamlike, coher-
nce and polarization properties can be described either
n the space–time domain by the so-called beam
oherence-polarization (BCP) matrix [25,26] or in the
pace–frequency domain by the CSD matrix [18,27,28].
ere, we will employ the latter, which is defined as

Ŵ��1,�2� =�Wxx��1,�2� Wxy��1,�2�

Wyx��1,�2� Wyy��1,�2�
� , �6�

here the matrix elements are evaluated as

W����1,�2� = �E
�
*��1�E���2��. �7�

ereafter, we will use the subscripts � and � to label the
artesian components x or y of the field. It is worthwhile

o note that when �1=�2, the CSD matrix has the same
orm as the ordinary polarization matrix [29]. The matrix,
owever, can change form one point to another, so that
ne speaks of a local polarization matrix, say P̂���, deter-
ined by

P̂��� 	 Ŵ��,�� =�Wxx��,�� Wxy��,��

Wyx��,�� Wyy��,��
� . �8�

The quadratic form to be considered for the present
ase is

Q = �
�,�

�
n,m

W����1n,�2m�an
*bm. �9�

ere, the two sets of arbitrary constants 
an� and 
bm�
nd those of the position vectors 
�1n� and 
�2m� are in-
olved. The continuous version of Q reads

Q = �
�,�
�� d2�1d2�2W����1,�2�f

�
*��1�f���2�, �10�

here f���� is an arbitrary function. Nonnegativeness of
he CSD matrix requires that Q never become negative.

In order to find the modal expansion of the CSD matrix,
e have to solve the equations

�
�
� d2�1W����1,�2�u���1� = �u���2�. �11�

quations (11) constitute a system of two coupled homo-
eneous Fredholm integral equations admitting a finite or
enumerable set of eigenvectors un��� and eigenvalues �n.
ach eigenvector has two Cartesian components, say
nx��� and uny���. They can be arranged either in a row or

n a column vector. We shall use the second choice so that
he eigenvector can be thought of as a Jones vector [29].

The CSD matrix can then be expressed by the series

Ŵ��1,�2� = �
n

�nun��1�un
†��2�, �12�

here the dagger denotes the Hermitian conjugate. Obvi-
usly, finding eigenvectors and eigenvalues is even more
hallenging than in the scalar case. For an example of
losed-form solutions, see [30].

A comment about terminology is in order. In the follow-
ng we shall be concerned with the existence of correla-
ions among fluctuating quantities. In this context, each
erm in the sum on the r.h.s. of Eq. (12) represents a CSD
atrix of a single mode. All Cartesian components of the

lectric field of any given mode are mutually fully corre-
ated. On the other hand, any pair of Cartesian compo-
ents pertaining to different modes are completely uncor-
elated so that the CSD becomes a superposition of the
umber of uncorrelated contributions. The overall level of
eld correlations will then depend on the structure of the
odes and the eigenvalue distribution.
In the next sections, we will extensively use the Fourier

ransform (FT). We will use it in its symmetrical form. Ac-
ordingly, for a typical function s��1 ,�2�, we shall evaluate
ts FT, to be denoted by a tilde, as
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�p1,p2� =�� d2�1d2�2s��1,�2�exp�− 2�i�p1 · �1 + p2 · �2�,

�13�

ith a similar (and simpler) expression holding for func-
ions with a single argument.

It is useful to note that, using the FT, Eq. (10) can be
onverted to the spatial frequency domain as follows:

Q = �
�,�
�� d2p1d2p2W̃���p1,− p2�f̃

�
*�p1�f̃��p2�. �14�

he nonnegative definite character of Ŵ can then be as-
essed in terms of FTs. More explicitly, if we denote by
ˆ �p1 ,p2� the matrix whose elements are W̃���p1 ,−p2�, we
an say that the nonnegative definiteness of Ŵ implies
hat of Ŵ, and vice versa.

. DIFFRACTION-FREE BEAMS
e shall begin by recalling scalar diffraction-free beams.

n the coherent case, the simplest of such beams is de-
cribed by an optical field with the structure

�n��� = Jn����exp�in	�, �15�

here Jn is the Bessel function of the first kind and order
and � is a scaling parameter. The variables �,	 are the

olar coordinates associated with the vector �. Beams of
his type are called Bessel beams. More generally, any, fi-
ite or denumerable, linear combination of the form

V��� = �
n

an�n��� �16�

ill also produce a coherent diffraction-free beam, pro-
ided only that the sum in Eq. (16) converges for any �.
he optical field in Eq. (16) is said to be fully spatially co-
erent because it is obtained by a linear superposition of
essel modes. It is worth noting that the FT of any such
eam is concentrated on an infinitely thin annulus in the
patial frequency plane. This stems from the fact that the
T of any Bessel beam in polar coordinates �p ,
� reads

�̃n�p,
� = �− i�n��p − �/�2��exp�in
�, �17�

here � denotes the Dirac delta function. Consequently,
he FT of V is also concentrated along the circle p
� / �2��.
In its simplest form, the extension from a coherent to a

artially coherent case is accomplished by combining the
essel modes in an uncorrelated way. This gives rise to

he CSD of the form of Eq. (5) with the eigenfunctions un
eplaced by the �n and nonnegative eigenvalues �n. In
eneral, an arbitrary choice of �n’s does not at all guaran-
ee that the corresponding CSD will be expressed in a
losed form. On the contrary, this happens for a few cases
nly. As a simple example, we may consider the situation
f all equal eigenvalues. In this case, the CSD is propor-
ional to J0���1−�2�� [21]. Recently, a class of scalar
iffraction-free partially coherent beams, called dark and
ntidark, has been introduced [11]. The CSD of such
eams is given by the formula
W��1,�2� = J0����1 − �2�� + �J0����1 + �2��, �18�

here � is a real parameter with � �[ 1, 1]. The modal
xpansion of such beams [11] is of the form of Eq. (5), with
igenfunctions given by Eq. (15). We can rewrite it as

Wdf��1,�2� = �
n=−�

�

�n�n
*��1��n��2�, �19�

here the subscript “df” stresses the diffraction-free na-
ure of the beams and the eigenvalues are given by

�n = 1 + �− 1�n�. �20�

he limiting case ��1 can be termed “black” diffraction-
ree beams in analogy with the soliton case [11]. We re-
ark in passing that the DADDF beam class can be en-

iched by considering uncorrelated superpositions of the
orm (19) with different values of the scaling parameter �
nd, for each �, arbitrary distributions of nonnegative ei-
envalues �n.

We now wish to extend the scalar treatment to the elec-
romagnetic case, having in mind, in particular, DADDF
eams. To this end we assume that both diagonal ele-
ents Wxx and Wyy are equal to the scalar CSD Wdf given

y Eq. (19). With such an assumption, the field emitted by
he vectorial source defined by Ŵ turns out to be indistin-
uishable, as far as only scalar measurements are con-
erned, from that emitted by the scalar source described
y Wdf in Eq. (19). The critical point is how to choose the
ff-diagonal element Wxy in order for the correlation ma-
rix Ŵ to satisfy the nonnegative definiteness condition.
s we shall see, this poses severe restrictions on the
hoice of Wxy. Let us write the quadratic form Q intro-
uced by Eq. (9) as

Q =�� d2�1d2�2
Wdf��1,�2��f*��1�f��2� + g*��1�g��2�

+ 2 R�Wxy��1,�2�f*��1�g��2��, �21�

here we let fx���= f��� and fy���=g��� and where R de-
otes the real part. It follows that for any choice of the
unctions f and g, Q has to be nonnegative. To find a nec-
ssary condition for Ŵ to represent a bona fide CSD ma-
rix, let Qdf and Qxy be the contributions to Q coming from
he terms associated with Wdf and Wxy, respectively, and
bserve that, because of Eq. (19), Qdf can be written as

Qdf = �
n

�n��� d2��n���f*����2

+ �� d2��n���g*����2� .

�22�

urther, on applying Parseval’s theorem for the FT, the
ollowing equation holds for any n:

� d2��n���h*��� =� d2p�̃n�p�h̃*�p�, �23�

here h= f ,g. Let us now recall that, according to Eq. (17),
˜

n is concentrated along a circle of radius � / �2��. Now,
ince f and g are arbitrary, we can always choose them
uch that f̃=0 and g̃=0 along the circle p=� / �2��. In this
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ase, all terms in the sum on the r.h.s. of Eq. (22) vanish,
mplying that Qdf=0. As a consequence, on expressing f
nd g via their FTs, Q reduces to [see Eq. (13)]

Q = Qxy = 2 R�� � d2p1d2p2W̃xy�p1,− p2�f̃*�p1�g̃�p2�� .

�24�

ince f̃ and g̃ are required to vanish only along the circle
f radius � / �2��, it is always possible to adjust them in
he remaining parts of the p1and p2 planes in such a way
hat Q becomes negative, thereby implying that the CSD
atrix will not be bona fide (i.e., it will not satisfy the

onnegative definiteness condition).
The latter statement can be proved by choosing

�p� and g̃�p� to be deltalike functions [remember
q. (9)]. More precisely, we set f̃�p�=a��p−p0� and
�p�=b��p−p0��, where a and b are arbitrary complex
umbers, while p0 and p0� denote two arbitrary points
cross the transverse plane, located outside the circle of
adius � /2�. With this choice Eq. (24) becomes

Q = Qxy = 2R
ab*W̃xy�p0,− p0���, �25�

hich, due to the arbitrariness of a and b, can always be
ade negative unless Wxy�p0 ,−p0�� vanishes. Since p0 and

0� are arbitrary, we have proved that W̃xy�p1 ,−p2� has to
anish everywhere except at p1=p2=� / �2��, implying
hat

W̃xy�p1,− p2� = ��p1 −
�

2�
���p2 −

�

2�
�F�
1,
2�, �26�

here F is a suitable function of the angular coordinates
1,
2 in the Fourier space.

Equation (26) specifies a necessary constraint on the
athematical structure of W̃xy. To determine in which

ases it is also a sufficient condition, we have to inquire
bout the choices of F leading to nonnegative Q when f
nd g are chosen at will. Notice that, in this case, f̃ and g̃
o not have to vanish along the circle of radius � / �2��.
bserve now that using Eqs. (22), (23), and (17), Qdf can
e expressed as

Qdf = �2�
n

�n��fn�2 + �gn�2�, �27�

here

hn =
1

2�
�

0

2�

h̃� �

2�
,
�exp�− in
�d
, �28�

ith h= f ,g denoting the nth Fourier coefficient of the re-
triction, to the circle p=� / �2��, of the function h̃�p ,
�.

As far as Qxy is concerned, on inserting Eq. (26) into Eq.
24), and on taking Eq. (28) into account, we obtain, after
ome algebra, the expression

Qxy = 2�2 R��
n,m

fn
*gmFnm� , �29�

here the matrix elements F are defined by
nm
Fnm =�
0

2��
0

2� d
2d
1

4�2 F�
1,
2�exp�in
1 − im
2�. �30�

ccordingly, the nonnegative definiteness condition for
he function F�
1 ,
2� transforms into

�
n

�n��fn�2 + �gn�2� + 2�
n,m

R
fn
*gmFnm� � 0, �31�

or any choice of fn ,gn. Equation (31) is the necessary and
ufficient condition to determine, via Fourier inversion of
q. (30), all possible types of functions F�
1 ,
2� leading to
enuine diffraction-free beams.

. EXAMPLES
. Shift-Invariant Case
onsider the case of Fnm=an�nm, with 
an� being a set of

generally) complex numbers. Consequently, F is an angu-
arly shift-invariant function; i.e., it depends on the differ-
nce 
2−
1 only. In fact, its Fourier series is easily seen to
e

F�
1,
2� = �
n

an exp�in�
2 − 
1�, �32�

t then follows at once from Eqs. (26), (32), and (15) that

Wxy��1,�2� = �
n

an�n
*��1��n��2�, �33�

nd, by substitution into Eq. (31), the quadratic form re-
uces to

Q = �
n

�n��fn�2 + �gn�2� + 2 R
anfn
*gn�. �34�

ccordingly, the nonnegative definiteness condition on Q
imply implies that the inequalities

�an� � �n �35�

ust be fulfilled for any n. It is worth noting that the
resent class of correlation matrices admits a simple and
nstructive physical interpretation. In fact, by using Eqs.
19) and (33), it is straightforward to show that Ŵ��1 ,�2�
an be written as

Ŵ��1,�2� = �
n

P̂n�n
*��1��n��2�, �36�

here P̂n is the matrix

P̂n = ��n an

an
* �n

� . �37�

t is seen from Eqs. (36) and (37) that the degree of polar-
zation will change from one point to another because of
he different spatial structure of the functions �n���.
quation (37) allows the electromagnetic modal expan-
ion [30] of Ŵ��1 ,�2� to be derived in a straightforward
ay. In fact, it is sufficient to diagonalize each matrix P̂n.

t is characterized by the eigenvalues �n
�±�=�n± �an�, asso-

iated with the eigenvectors, say Un
�±�, whose (normalized)

ones representation is given by
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Un
�±� =

1

�2
�±exp�iεn�

1 � , �38�

ith εn denoting the phase of an. Accordingly, the Mer-
er’s expansion of Ŵ��1 ,�2� reads

Ŵ��1,�2� = �
n

�
�=±

�n
����n

�����1���n
�����2�†, �39�

here

�n
�±���� = �n���Un

�±�. �40�

he modal decomposition in Eq. (39) gives a “natural”
epresentation of Ŵ as a superposition of uncorrelated
essel beams each of which has a suitable (uniform) po-

arization state. It is remarkable that the presented case
onstitutes one of the few examples (to our knowledge) of
eams for which the electromagnetic modal expansion
an be unfolded in exact, analytical terms.

As a simple but illuminating example, we apply these
esults to the vectorial generalization of DADDF beams.
he diagonal elements of the correlation matrix Ŵ are
iven by Eq. (18). As far as the off-diagonal element is
oncerned, we shall limit ourselves to the case corre-
ponding to setting an=a for any n, with a being a com-
lex parameter. This choice leads to Wxy=aJ0����1−�2��,
nd the nonnegativeness condition simply requires that

a��1− ���. In the Fourier domain, it is seen at once that
he field turns out to be �-correlated across the circle p
� / �2��. It is interesting to note that the present cross-
pectral density matrix can always be written as a sum of
wo matrices, say Ŵ�p���1 ,�2� and Ŵ�u���1 ,�2�, where

Ŵ�p���1,�2� = J0����1 − �2����a� a

a* �a�� , �41�

nd Ŵ�u���1 ,�2� is a diagonal matrix whose elements have
he form

W��
�u���1,�2� = �1 − �a��J0����1 − �2�� + �J0����1 + �2��.

�42�

e then have the superposition of two uncorrelated
eams. One of them, specified by Ŵ�p�, is completely polar-
zed, while the other, �Ŵ�u��, is totally unpolarized. This
ype of decomposition is customary for polarization matri-
es [31] but is less familiar for CSD matrices [32].

. Specular Case
s a second example, we consider beams with centrosym-
etric correlation functions. The latter term implies the

xistence of a center of inversion—or even a whole mani-
old of such centers, for instance, a line or a plane—such
hat the optical fields are maximally correlated at pairs of
oints symmetric with respect to the center(s). If, for in-
tance, the center of inversion is chosen to coincide with
he origin, the fields are perfectly correlated at pairs of
oints specified by the radius vectors � and � in the
ransverse plane of the beam. Specular beams were first
ntroduced in [33] within the framework of scalar coher-
nce theory. Electromagnetic specular solitons were also
onsidered and their unusual polarization properties
ere examined in [34].
In the present context, we assume the angular correla-

ion function F�
1 ,
2� to be a real function of 
1+
2,

F�
1,
2� = G�
1 + 
2�, �43�

here

G�
� = �
n

�n exp�in
�, �44�

n being a complex parameter such that �−n=�n
*. To find

he conditions under which the CSD matrix Ŵ so defined
urns out to be nonnegative definite, we observe that the
iagonal element of Ŵ, in the Fourier space �p1 ,p2�, as-
umes the form

W̃df�p1,− p2� = ��p1 −
�

2�
���p2 −

�

2�
�Fd�
2 − 
1�,

�45�

here

Fd�
� = �
n

�n exp�in
�. �46�

herefore, the matrix Ŵ�p1 ,p2� introduced in Section 2
akes on the form

Ŵ�p1,p2� = ��p1 −
�

2�
���p2 −

�

2�
�

��Fd�
2 − 
1� G�
2 + 
1�

G�
2 + 
1� Fd�
2 − 
1�
� . �47�

n performing a counterclockwise � /4 rotation of the ref-
rence frame, the matrix assumes the diagonal form, say
ˆ ��p1 ,p2�, given by

Ŵ��p1,p2� = ��p1 −
�

2�
���p2 −

�

2�
�

��K+�
1,
2� 0

0 K−�
1,
2�
� , �48�

here

K±�
1,
2� = Fd�
2 − 
1� ± G�
2 + 
1�. �49�

ote that the reality of G plays an essential role in the
erivation.
We now see that the proof of the nonnegative definite-

ess of Ŵ reduces to finding the conditions under which
he two scalar kernels Fd�
2−
1�±G�
2+
1� are bona fide.
he latter implies that the quantity

Q =�� d
1d
2�Fd�
2 − 
1� ± G�
2 + 
1�q*�
1�q�
2�

�50�

ust be nonnegative for any choice of q�
�. On writing
=Q ±Q , with
d a



t

f

w

i
t

w



I
t
c
l
f

w
s
s
f

w

d
�
f

w
c
h

w
s

w
w
t

w

w

a

b
p
F

5
I
m
d
i
(
d
s
r
v
t
b
C
u
i
r

2280 J. Opt. Soc. Am. A/Vol. 26, No. 11 /November 2009 Borghi et al.
Qd =�� d
1d
2Fd�
2 − 
1�q*�
1�q�
2�,

Qa =�� d
1d
2G�
1 + 
2�q*�
1�q�
2�, �51�

he nonnegative definiteness statement translates into

Qd � �Qa�, �52�

or any q. It can be inferred from Eqs. (46) and (44) that

Qd = �
n

�n�qn�2,

Qa = �
n

�nq−n
* qn, �53�

here the asterisk denotes a complex conjugate and

qn =�
0

�

d
q�
�exp�− in
� �54�

s proportional to the nth Fourier coefficient of the func-
ion q�
�. Accordingly, Qd±Qa assume the forms

Qd ± Qa = ��0 ± �0��q0�2 + �
n=1

�

�n�qn�2

+ �−n�q−n�2 ± 2 R��nq−n
* qn, �55�

hich turn out to be nonnegative for any choice of the set
qn�, if and only if the following conditions are fulfilled:

��0� � �0,

��n� � ��n�−n, n � 1. �56�

t is also interesting to point out that in the present case,
he complete modal expansion of the CSD tensor Ŵ��1 ,�2�
an be found explicitly. To this end, we first solve the prob-
em in the spatial frequency domain by considering the
ollowing integral equations:

�
0

2�

K±�
1,
2���±��
2�d
2 = 2���±���±��
1�, �57�

here ��±� denote the eigenvalues and ��±��
� the corre-
ponding eigenfunctions. Recalling Eqs. (46) and (44) and
ubstituting from Eq. (49) into Eq. (57), we arrive at the
ollowing linear equation set:

�−n�n ± �n�−n = ��n, n = 0, ± 1, ± 2, . . . , �58�

here

�n =
1

2�
�

0

2�

��
�exp�− in
�d
 �59�

enotes the nth Fourier coefficient of the eigenfunction
(
). The linear system in Eq. (58) actually leads to the

ollowing uncoupled linear systems:

�� + � �� = �� ,
0 0 0 0
��−n�n + �n�−n = ��n,

�n�−n + �n
*�n = ��−n,� n � 1, �60�

here �n= ±�n �n=0,1,2. . . �. The eigenvalues of Eq. (60)
an be found via elementary algebra. In particular, we
ave for n=0 that

�0
�±� = �0 ± �0, �61�

hile for n�1 the eigenvalues are independent of the
ign chosen for K± and are given by

�n,1
�±� =

�n + �−n

2
+���n − �−n

2 �2

+ ��n�2, �n � 1�,

�n,2
�±� =

�n + �−n

2
−���n − �−n

2 �2

+ ��n�2, �n � 1�,

�62�

hich, due to the inequality in Eq. (56), turn out to be al-
ays nonnegative. As far as the corresponding eigenfunc-

ions are concerned, it is easy to prove that

�0
�±� = 1, �63�

hile for n�1 it turns out that

�n,j
�±� = �n,j

�±� exp�in
� + �−n,j
�±� exp�− in
�, �64�

here

�n,j
�±� =

±�n

���n,j
�±� − �−n�2 + ��n�2

,

�−n,j
�±� =

�n,j
�±� − �−n

���n,j
�±� − �−n�2 + ��n�2

, �65�

nd j= 
1,2�.
Once the Fourier transforms of the eigenfunctions have

een found in the rotated frame, the corresponding ex-
ressions in the coordinate space may be obtained by a
ourier inversion.

. SUMMARY
n summary, we have presented a novel class of electro-
agnetic partially correlated diffraction-free beams. The

iagonal elements of their CSD correspond to previously
ntroduced scalar dark and antidark diffraction-free
DADDF) beams. However, the freedom to choose the off-
iagonal elements of the CSD, whose functional form is
ubject only to the nonnegative definiteness requirement,
esults in a multitude of novel diffraction-free beams with
ery flexible—and controllable—polarization characteris-
ics. The presented results are not restricted to DADDF
eams; rather, our approach pertains to any beams whose
SD’s diagonal elements are formed by superpositions of
ncorrelated Bessel modes. Finally, we note that although

deal diffraction-free beams are not realizable in the labo-
atory, the apertured versions of the proposed beams can
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e easily implemented. The finite-size-aperture effects on
ADDF beam propagation in free space were previously
iscussed in [11].
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